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Time Correlation Functions of a One-Dimensional 
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We investigate the time evolution of a simple one-dimensional system with 
an infinite number of particles. We calculate some time correlation functions 
and show that they behave asymptotically as 1/VT. 
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1.  I N T R O D U C T I O N  

Let Z be a "one-dimensional"  net formed by the intersection of two helices 
with opposite pitch wound on an infinite cylinder. The sites of  Z are labeled 
by integers m ~ g. Let (Y', T, F) be a system of infinitely many particles on the 
" la t t ice"  Z with discrete velocities, namely, the particles are on the sites of  Z 
and jump each unit of  time jn one of  the four directions of  the lattice, suffering 
collisions with each other in such a way that the particle number and the total 
momentum are conserved during a collision. This system is similar to the 
one introduced by Hardy et al. <1~ This system is also essentially isomorphic to 
the one-dimensional hard-point system with two colors whose particles have 
integral positions and velocities v of  unit magnitude Iv[ = 1 (Section 2.3). 

In Section 2 we describe the model in detail and define the time evolution 
mapping T and the equilibrium measure/z. 

In Section 3 we establish some fundamental  properties of  the system. 
We also show there that the system has a factor which is isomorphic to a 
Bernoulli system. So the system has positive entropy. The notion of funda- 
mental path introduced there plays an essential role in the later investigations. 

In Section 4 we calculate the time correlation functions. Their orders of  
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decay are l / E ,  the same for all values of the density, and their coefficients 
depend analytically on the density. 

The system is a K-system, as was shown by Aizenman. (16) 

2. D E S C R I P T I O N  OF D Y N A M I C A L  S Y S T E M  (~, T, t~) 

2.1. Let Z be a "one-dimensional" net as is defined in the introduction. 
To define the time evolution of the system rigorously we represent Z as the 
quotient space of 7/2 under the group G of shifts of 7/2 generated by g, where g 
is a translation of 7/2 by the vector ( -1 ,  1). Let P = {vl, v2, v3, v~}, where 
vl = (1, 0), v2 = (0, 1), v3 = ( -1 ,  0), and vr = (0, -1) .  

Let 

= (X[X: Z x P--+{O, 1}} 

For  any (a, v)E Z x P, X(a, v) = 1 means that there is a particle with 
velocity v at the site a. 

Let 

Then naturally we have 

~ = {X~ = Xi~)~[Xe~ ) 

2.2. Now let us define the time evolution mapping T of the phase space 
~. The mapping T is made up of the "free mot ion"  To and the "coll ision" 
C : T  = C.To.  

To is merely a translation of ~ :  

(ToX)(a,v) = X ( a -  v,v) for V(a,v) E Z  x P 

C is defined by the interaction mapping 4, of Wo, 

~0 = {XolX0: P---~{0, 1)} _ 2 ~' 

[We identify a Xo ~ Y'o with the subset (v ~ PIXo(v) = 1}.] 
We define q~ by q~({vl, v3)) = {v~, v4}, 4,({v2, v4}) = {vl, va}, and otherwise 

q~ maps identically. Using this mapping ~, we define the collision C as follows: 

( c x L  = ~(xo),  x~ ~ ~r~ __ ~ro 

2.3. The obtained dynamical system (Y', T, tz) with an invariant homo- 
geneous probability measure/~ (we define it later precisely) is similar to the 
one introduced by Hardy et al. ~) 

For the following investigation it is conveneint to reformulate (~, T, t~) 
as follows. 
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Let  

R = {s, d, e, O} 

We identify each space Y~ with the space R • R as follows: 
L e t f  [resp. g] be a mapping f rom 2(~1'v~ ) [resp. 2%'~, )] to R such that  

f({vl}) = s,f({v2}) = d , f (~)  = O,f({vl ,  vz}) = 0 [resp. g({v3}) = d, g({v,}) = 
s, g(~) = O, g({va, v~}) = 0].  We have 

~ a  -~ 2 %'~'~ x 2 % ' ~  ~ ~ R x R 
g@f 

By these identifications the phase space ~ is identified wi th the  space (R • R) z, 
which we denote again by ~,  

The time evolution mapping T = C .To  can be written as follows: For  
x = {(&, r~)) 

T0X = {(/if, &')} 

where (lm ~, rm') = (l~+1, rm-1) and 

CX = {(1~, rm)} 

where 

~(s, d) if (lm, rm) = (d, s) 
I 

(l~, r~) = ~(d, s) if (Im, rm) = (S, d) 
I 

L(I,~, rm) otherwise 

The invariant probabil i ty measure /, that  we consider is the product  
(Bernoulli) probabil i ty measure on (R x R) ~, /z = (/x o |  e, where /*o is 
the measure on R such that  /*0(s) =/zo(d)  = p(1 - p), /,o(0) = (1 - 0) 2, 
/*o(0) = p2; here 4p denotes the density of  the system. 

Remark.  The dynamical  system (W, T,/z) represented in this way is 
i somorphic  to the hard-point  system with two colors whose particles have 
integral initial positions and velocities v of  unit magnitude Iv[ = 1, if we 
identify the states 0 and @. 

3. F U N D A M E N T A L  PROPERTIES OF THE D Y N A M I C A L  
S Y S T E M  (~c, T, ~) 

3.1. F r o m  the special properties of  the time evolution mapping T, we 
can easily observe the following properties.  

1. I f  we identify the states s and d (this identification is compatible with 
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the time evolution T), then the obtained factor dynamical  system is nothing 
but the ideal gas, that  is, a system with no interaction. More  precisely, we 
have the following: 

Proposition 1. Let h: R --+ R = {h O, @} be the mapping h(s) = h(d)  = ~, 
h(O) = 0, h(O) = O, and WT = (R x ll) ~. Let T be the t ransformat ion de- 
fined at any X = {(ira, ~=m)} e Y" by 

T)7 - '  = {(lm, ~m')} 

where - ' -' (lm , rrn') = (]~+1, rm-1) .  Then  we have 

h . T  = T .~  

where h = (h | h) ~ : Y" -+  Y'. 

Remark.  The factor dynamical  system (5~, T, g) [g = ~(/x)] is isomorphic  
to a Bernoulli system. Thus the system (W, T,/z) has a positive entropy. 

2. Along the time evolution the states on the even sites (/2m, r2~) o f  the 
initial configuration do not  interact with the states on the odd sites 
(12m,+ 1, r2m'+l)  of  the initial configuration. 

3.2. N o w  we consider the diagram o f  the time evolution o f  the configura- 
tions X of  W. Take an initial configuration X; we then describe the diagram 
of  the time evolution o f  X as in Fig. 1. Here X = {(lr~, rm)} is taken to be for 
m = - 8  ..... 4, 6, 8 ; l_a  = r -6  = l-2 = lo = r6 = s ; l_6  = r -2  = r2 = l~ = 
16 = d; and the other lm and rm are 0 or | 

oo 'S 

2;', >- ,  \ /  "-., 
" ,  oo P 

�9 t ~ 

( 
% 

time 

~ s 

�9 ~",, "~t~ ,rtt X 

3:'., -,,., \ .  

\ ,'~ 4 - , ,  / ' ~  8 ,, 

,,% 

Fig. 1 
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In Fig. 1 solid (resp. dotted)  lines show that  a long these lines the states s 
(resp. d) evolve. Note  that  we do not  describe the d iagram of  the states tha t  
are initially on odd sites (12m+ 1, r2m+ 1), because of  the above p roper ty  2. The  
d iagram of  the states on odd sites and that  o f  the states on even sites are 
mutual ly  independent .  Therefore  f rom now on we consider only the states on 
even sites of  the initial configurations.  Similarly, the diagrams of  the states 0 
and  O are not  described explicitly because of  Proposi t ion 1. 

F r o m  these lines we pick up the paths S of  X as in Fig. 1 ; more  precisely 
we have the following: 

Definition 1. Let X ~ W and T " X  = {(l(m "~, r~"~)} Vn ~ 2~. A fundamenta l  
pa th  o f  X is a sequence 

S = {  .... s _ l , s 0 , s l  .... }, s ~  

that  satisfies (a) V n e Z ,  h(l(~ ~) = ~  or h(r}~ ~) = ~; (b) s~+l - s ,  = + 1 ;  (c) 
s ,+ l  - s~ changes sign, that  is, (s ,+l  - s ,)(s ,  - s,~-l) = - 1 ,  if  and only if 
S,  = (s, ,  n) is a point  o f  intersection o f  the lines, h(l(~, ~) = h(r(~ ~) = ~. 
Further ,  s~+l - s~ = 1 (resp., = - 1 )  if' h(r~,("~) = ~ [resp., h(l}~ ~) = ~]. 

We say that  S passes th rough  l(m "~ (resp. r(m "~) if S~ = m and s ,+ l  - s ,  = 
- 1  (resp., = 1). 

One may  r ega rd  a fundamenta l  pa th  as describing the mot ion  o f  an 
" e l emen ta ry  exci tat ion."  The index of  the sequence represents time. 

N o w  we introduce an order a m o n g  all the fundamenta l  paths o f  X that  
pass through the even (or odd) sites, namely  paths with an even (or odd) so. 

Definition 2. Fo r  any two fundamenta l  paths S and  S o f  X, we call 
S < S if the pa th  S lies on the left o f  the pa th  o e, tha t  is, if s,  < g~ for  all n. 
Note  that  by Definit ion 1, if  S ~: S then S < S. 

3.3. We have the following result:  

Lemma  1. Along any fundamenta l  pa th  S of  X al terat ion of  the states s 
and d cannot  take place. Tha t  is, let S pass th rough  x(~, ~, where x = 1 or r; 
then x (~) = d(resp.  = s )  for  some no if and only ifx(~, ~ = d(resp.  = s )  for  all n. 

Sn o 

This lemma,  which follows easily f rom the p roper ty  of  the collision C, 
makes  it possible to define the not ion of  the color  of  a path.  

Definition 3. A fundamenta l  pa th  S of  X has a color d (resp. s) if 
x("> = d (resp. = s ) .  We denote the color  o f  S by c(S).  

It  is also easy to prove  (cf. Refs. 15 and 16) the following " M a r k o v  
p r o p e r t y "  of  the measure  t~. 

Lemma  2. Fo r  each n e Z let Q ,  be the par t i t ion o f  Y" according to 
whether  there is a pa th  passing th rough  l(o ~ or r(0 "). Then  the part i t ions Q ,  are 
jo int ly  independent .  
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This property is the main reason for the usefulness of our representation. 
Notice that the sequence formed by the colors of the paths that pass through 
{i(~ ~(~n is strongly restricted by consistency conditions. These result from *0 ~ " 0  S 

Lemma 1 and the fact that the relative order of the paths is invariant in time. 

4. T I M E  C O R R E L A T I O N  F U N C T I O N S  

4.1. Using properties established in Section 3, we can calculate explicitly 
the time correlation functions and as a consequence we can show that the 
system is mixing. 

Now let us compute the correlation functions 

C~(A, B; p) =/~(A n T-~B) - /x(A)/x(B) 

for arbitrary cylinder sets A and B of 
As an example, we compute the simplest one. Let, for instance, 

A = {X ={(lm, rm)}[/o = s, ro = d} 

We will compute Cn(A, A; p). 
Let X~  A n T-2nA. Let S o and S 1 be fundamental paths of X tha t  pass 

through lo and ro, respectively (S  o < $1). Let S ~ and $ t  be paths of X that 
pass through l~o 2~) and r~o 2~), respectively (g ~ < S~). Note that l~o 2~) = s and 
ro (2~> = d, since T2~X ~ A (see Fig. 2). 

Let 

L ~ ( X )  =- #{ml0 < 2m < 2n, h(12m(X)) = ,) 

R ~ ( X )  = #{m{0 > - 2 m  > - 2 n ,  h(r -2m(X))  = ,} 

D " ( X )  = L"(X)  - R (X) 

Here #{...} means the cardinality of the set {...}. 

t i~e 

\ 

Rn(K) I Ln(X) 
Fig. 2 
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Let  

E_ = { X ~ A  n T-~"A[D~(X) < -1}  

E+ = { X ~ A  r T-2~AID~(X)  > 1} 

These sets E _ ,  E_~,. . . ,  E+ are mutua l ly  dis joint  decompos i t ions  o f  
A r T-2~A. These sets are  charac te r ized  as follows" 

E_ = {X~  A n T - 2 ~ A I S  ~ < S O } 

E_~ = ( X ~ A  n T - ~ A I ~  ~ = S o} 

Eo = { X ~ A n T - 2 ~ A [ S  ~ = S O , S ~  = S 1} 

E1 = { X ~ A  n T - 2 " A [ S  1 = S ~ 

E+ = { X E A  n T - 2 " A ] S  1 < S ~ 

Let  us compute  ~(Eo). We define 

E = {h(/o(X)) = h(ro(X)) = h(/~.(X)) = h(r_2.(X))  = ,} c~ {D"(X) = 0} 

Then  

Eo = A n T - 2 " A n { D " ( X )  = 0} 

= E c~ {c(S o) = c(S o) = s, c ( S 9  = c ( S O  = d }  

But, under  the condi t ion  E, S O = S ~ and  S ~ = S ~. Therefore  

Eo = E n {c(S o) = s, c ( S 9  = d }  

Hence 

tL(Eo) = /~(E)/~({c(S ~ = s, c(S 1) = d}IE) 

= (})2/~(E) 

= (�89 . . . . .  h(r_2,(X)) = ,})>({D"(X) = 0}) 

= 22t~(A)2po 

Here  we have used the independence  o f  {h(lo(X)) . . . . .  h(r_ 2,(X)) = ~} and  

{D~(X) = 0}. 
The o ther  probabi l i t ies  can be c o m p u t e d  similarly.  They  are given by 

/x(E_) = / z ( A ) 2 P < - 1  

/x(E_ 1) = /x(A)%( S~ S1)P-~ 

~(Eo) = ~(A)~4S ~ S ~  SOPo 

~ (E0  = ~(A)~4S ~, S~ 

/~(E+) = tL(A)~P:~ z 
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where we use the notat ions 

P,~ = ~({D"(X) = k}) 

and 

~(S, S)  = {~ if otherwise c ( S ) = c ( S )  

To compute  t~(E_~) note that  as c(S ~ = s and c(S ~) = d, so E _ I  = q~ 
and/~(E_I)  = 0. 

Finally, we get 

C2n(A, A; p) = ~(E_)  + I~(E_I) + .-. + /~ (E+)  - /~(a) 2 

= t~(A)2(3Po - P - 1  - P~) 

Here we have u s e d P < _ t  + P - 1  + ' " + P > ~  = 1. 
The probabilities Pk, 

P~ = i~({Dn(X) = k}) 

= ~ ,~lCj+kPJq"-l-JpJ+~q " - l - j - k  
/ : 0~<y j '+  k~<n-  1 

where p = 2p(1 - p) and q = I - p, appear  in the calculation o f  the central 
limit theorem for  the sum of  a Markov  chain. These asymptot ic  values are 
(see Refs. 7 and 8) 

P~ ~ (4pqzm)-1/5 as n -+  

Therefore 

C:.(A, A; p) ~ (4pq~n) - l /2 t~(A)~  

4.2. In  the similar way we can get the following result: 

Theorem 2. Let A and B be cylinder sets defined on even (or odd) sites 
simultaneously. The time correlat ion function o f  A and B behaves asymp- 
totically as 1/~/'n. More  precisely, 

C2n(A, B; p) ~ C(A, B)(4pqTrn) -~/2 as n - +  

where p = 2p(1 - p) and q = 1 - p. The coefficient C(A, B) depends only 
on A and B and can be calculated explicitly. 

When  C(A, B) = 0 the sign -~ means 

C2~(A, B; p) = o((4pq~m) -~'2) 

We note that  C2~+ ~(A, B; p) -- 0 and the general case is easily reduced to 
these cases by proper ty  2 o f  Section 3.1. 
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